Tetrahedron Letters,Vol.24,No.14,pp 1527-1530,1983 0040-4039/83/141527-04\$03.00/0 Printed in Great Britain ©1983 Pergamon Press Ltd.

> NEW STEREOSPECIFIC SYNTHESES OF PHEROMONE BOMBYKOL AND ITS THREE GEOMETRICAL ISOMERS

Norio Miyaura and Hiroshi Suginome* Organic Synthesis Division, Department of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan Akira Suzuki Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

<u>Abstract</u>: We describe stereospecific syntheses of pheromone, bombykol and the three geometrical isomers by means of the palladium-catalyzed cross-coupling between an appropriate alkenylborane and an alkenyl halide in the presence of a base.

Bombykol is a well-known pheromone, first isolated from <u>Bombyx Mori</u> L and its structure clarified by Butenandt and his colleagues.^{1,2)} The first syntheses of bombykol and the three geometrical isomers by employing the Wittig reaction were achieved by Butenandt and his colleagues³⁾ as well as by Truscheit and Eiter.⁴⁾ Since then, new syntheses of bombykol by two groups of investigators have been reported.^{5,6)} In this paper we wish to report new stereospecific syntheses of bombykol and its three geometrical isomers by use of the palladium-catalyzed cross-coupling reaction between an alkenylborane and an appropriate alkenyl halide in the presence of a base. We described this method in our previous papers,⁷⁾ and we believe that the present results show that the method developed by us is a powerful and reliable one for the stereospecific syntheses of conjugated dienes using alkenylboranes.

The ll-Hydroxy-l-undecenylboronic acid (4), (\underline{Z})-l-pentenyldisiamylborane (6), and (\underline{E})-l-pentenyl-l,3,2-benzodioxaborole (8) required for this coupling were newly prepared by the hydroboration of the appropriate acetylenic precursors as shown in Scheme 1. Thus, bromination at $-10^{\circ} \sim 0^{\circ}$ C, of l-undecen-ll-ol (1), prepared by the reduction of commercially available methyl ll-undecenoate with LiAlH₄ gave 10,ll-dibromoundecan-l-ol in a nearly quantitative yield. Its dehydrobromination with NaNH₂⁸ in liquid ammonia afforded ll-hydroxy-l-undecyne (2) as a viscous oil in a 60% yield. This acetylenic alcohol (2), without protecting the hydroxy group, was subjected to hydroboration with 1,3,2-benzodioxaborole to afford a borole (3) which was immediately hydrolyzed at room temperature to give (4), an amorphous solid. The yield of 4 from 2 was 83%. Borane (6) (99% isomeric purity by ¹H n.m.r.) was then prepared by hydroboration of l-bromo-l-pentyne (5)¹⁰ with disiamylborane in a 90% yield according to the literature procedure.¹¹

1527

 $a, Br_{2} = b, NaNH_{2}/NH_{3} = c, HBX_{2} = d, H_{2}O = e, t-BuLi = f, NaOMe = g, NaOH/I_{2} = h, PdL_{4}/NaOEt/benzene$

Furthermore, borole (8) was prepared by hydroboration⁹⁾ of 1-pentyne (7) with 1,3,2-benzodioxaborole in a 89% isolated yield. The geometry of the olefinic protons was confirmed by the 1 H n.m.r. spectrum.

On the other hand, the four alkenvl halides, (Z)-l-pentenvl bromide (9), (E)-1-pentenyl iodide (11), (E)-11-hydroxy-1-undecenyl iodide (12), and (Z)-11hydroxy-l-undecenyl bromide (13) were prepared by stereospecific halogenolysis of (4) and (8) according to the described procedure. $12 \sim 14$) Thus, the treatment of (8) with Br_2 followed by CH_3ONa in MeOH resulted in the replacement of borane by 2^{-3} Br₂ with an inversion of configuration¹² and gave (9) with an isomeric purity of over 99% (g.l.c.) (a 48% yield). Hydrolysis of borole (8) with H₂O into an amorphous (\underline{E}) -l-pentenylboronic acid (10) and the treatment of it with NaOH followed by I_2 according to the procedure by Brown et al.¹⁴) resulted in the replacement of boronic acid by I_2 with the retention of configuration to afford (11) in a 61% yield. The geometry of the olefinic protons was confirmed by the ¹H n.m.r. spectrum. Analysis of the iodide (11) by g.l.c. indicated that the isomeric purity was 97%. Analogously, using the procedure described above, iodide (12) and bromide (13) were readily prepared by stereospecific halogenolysis of boronic acid (4) with I_2 and with Br_2 in 77% and 78% yields respectively. The isomeric purity of (12) and (13) analyzed by g.l.c. exceeded 99%.

The Cross-Coupling Reactions

A mixture of (4) and (9) in benzene containing $Pd(PPh_3)_4$ and EtONa was heated under reflux for 2.5 h in an atmosphere of N₂. An excess of boronic acid was then removed by oxidation with 30% H₂O₂ and NaOH. A normal work-up and distillation of the crude product (a 82% g.l.c. yield) by using a Kugelrohr gave an analytically pure bombykol (14) (Scheme 3). The coupling constants of the olefinic protons in the ¹H n.m.r. (400 MHz), which showed no signals other than those due to bombykol, are shown in Table 1. An alternative synthesis of bombykol by cross-coupling between eleven-carbon alkenyl-halide (12) and five-carbon alkenyl borane (6) in benzene containing Pd(PPh₃)₄ and EtONa gave bombykol in 50% g.l.c. yield (Scheme 3).

The cross-coupling of (4) with (11) under the conditions similar to the synthesis of bombykol and the distillation of the product by using a Kugelrohr gave $(10\underline{E}, 12\underline{E})$ -hexadecadien-1-ol (15) in a 53% isolated yield (Scheme 4). Syntheses of the remaining two geometrical isomers of bombykol were accomplished by the stereospecific coupling of an eleven-carbon alkenyl halide and a five-carbon alkenyl borane; bromide (13) and borane (6) in benzene were subjected to the coupling reaction in the presence of Pd(PPh₃)₄ and EtONa to yield $(10\underline{Z}, 12\underline{Z})$ -hexadecadien-1-ol (16) in a 59% isolated yield (Scheme 4). Similarly, the cross-coupling of bromide (13) with borole (8) gave $(10\underline{Z}, 12\underline{E})$ -hexadecadien-1-ol (17) in a 77% isolated yield (Scheme 4). The coupling constants of olefinic protons of the three geometrical isomers of bombykol, (15), (16) and (17) are shown in Table 1.

Table l

Chemical shifts(δ) and coupling constants(Hz) of the olefinic protons of bombykol and the three geometrical isomers (CDCl₂-TMS, 400 MHz)

10-н	11-H	12-н	13-н
5.65 dt(15 and 6.8) $\underline{J}_{9-H,10-H}^{=6.8}$ $\underline{J}_{10-H,11-H}^{=15}$	6.30 dd(15 and 11) <u>J</u> 11-H,12-H ⁼¹¹	5.96 dd(11 and 11) <u>J</u> 12-H,13-H ⁼¹¹	5.30 dt(ll and 7.3) $\frac{J}{13}$ -H,14-H ^{=7.3}
5.42 dt(9.3 and 7.6) $\underline{J}_{9-H,10-H}^{=7.6}$ $\underline{J}_{10-H,11-H}^{=9.3}$	6.26 d(9.3)	6.26 d(9.3)	5.42 dt(9.3 and 7.6) $\underline{J}_{12-H,13-H}^{=9.3}$ $\underline{J}_{13-H,14-H}^{=7.6}$
5.30 dt(ll and 7.5) $\frac{J}{9}$ -H,10-H ^{=7.5} $\frac{J}{10}$ -H,11-H ⁼¹¹	5.95 dd(ll and ll) <u>J</u> ll-H,12-H ^{=ll}	6.30 dd(ll and 15) <u>J</u> 12-H,13-H ⁼¹⁵	5.66 dt(7.3 and 15) $\frac{J}{13-H,14-H} = 7.3$
5.56 or 5.57 dt (6.8 and 14.2 or 6.8 and 11.7) $\underline{J}_{9-H,10-H}^{=6.8}$ $\underline{J}_{10-H,11-H}^{=11.7}$ or 14.2	5.98 or 6.01 dd(6.8 and 11.7 or 6.8 and 14.2) <u>J</u> 11-H,12-H ^{=6.8}	5.98 or 6.01 dd(6.8 and 11.7 or 6.8 and 14.2) J12-H,13-H ^{=11.7} or 14.2	5.56 or 5.57 dt(6.8 and 14.2 or 6.8 and 11.7) J_13-H,14-H ^{=6.8}
	10-H 5.65 dt(15 and 6.8) $\underline{J}9-H,10-H=6.8$ $\underline{J}10-H,11-H=15$ 5.42 dt(9.3 and 7.6) $\underline{J}9-H,10-H=7.6$ $\underline{J}10-H,11-H=9.3$ 5.30 dt(11 and 7.5) $\underline{J}9-H,10-H=7.5$ $\underline{J}10-H,11-H=11$ 5.56 or 5.57 dt(6.8 and 14.2 or 6.8 and 11.7) $\underline{J}9-H,10-H=6.8$ $\underline{J}10-H,11-H=11.7$ or 14.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

References

- A. Butenandt, <u>Angew</u>. <u>Chem</u>., <u>54</u>, 89 (1941); A. Butenandt, R. Beckman, and E. Hecker, <u>Z</u>. <u>Physiol</u>. <u>Chem</u>., <u>324</u>, 71 (1961).
- 2) A. Butenandt, R. Beckmann, and D. Stamm, Z. Physiol. Chem., 324, 84 (1961).
- 3) A. Butenandt, E. Hecker, M. Hopp, and W. Koch, Annalen, 658, 39 (1962); A.
- Butenandt and E. Hecker, Angew. Chem., 73, 349 (1961).
- 4) E. Truscheit and K. Eiter, <u>Annalen</u>, <u>658</u>, 65 (1962).
- 5) E. Negishi, G. Lew, and T. Yoshida, <u>J. C. S. Chem.</u> Comm., 874 (1973).
- 6) J. F. Normant, A. Commercon, and J. Villieras, <u>Tetrahedron</u> <u>Lett.</u>, 1465 (1975)
- 7) N. Miyaura, K. Yamada, and A. Suzuki, <u>Tetrahedron Lett.</u>, 3437 (1979); N. Miyaura, H. Suginome, and A. Suzuki, ibid., 127 (1981).
- C. Brandma, "Preparative Acetylenic Chemistry", Elsevier Pub. Co., New York, N. Y. (1971), p.111.
- 9) H. C. Brown and S. K. Gupta, J. Am. Chem. Soc., <u>93</u>, 1816 (1972); H. C. Brown and S. K. Gupta, <u>ibid</u>., <u>94</u>, 4370 (1972).
- 10) K. E. Schulte and M. Goes, <u>Arch. Pharm.</u>, <u>290</u>, 118 (1959).
- 11) J. B. Cambell and C. A. Molander, J. Organomet. Chem., 156, 71 (1978).
- 12) H. C. Brown, T. Hamaoka, and N. Ravindran, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 5786 (1973)
- 13) A. F. Kluge, K. G. Untch, and J. H. Fried, <u>J. Am. Chem. Soc.</u>, <u>94</u>, 7827 (1972)
- 14) H. C. Brown, T. Hamaoka, and N. Ravindran, <u>J. Am</u>. <u>Chem</u>. <u>Soc</u>., <u>95</u>, 6456 (1973)

(Received in Japan 29 December 1982)